Student data mining solution-knowledge management system related to higher education institutions

نویسندگان

  • Srecko Natek
  • Moti Zwilling
چکیده

Higher education institutions (HEIs) are often curious whether students will be successful or not during their study. Before or during their courses the academic institutions try to estimate the percentage of successful students. But is it possible to predict the success rate of students enrolled in their courses? Are there any specific student characteristics, which can be associated with the student success rate? Is there any relevant student data available to HEIs on the basis of which they could predict the student success rate? The answers to the above research questions can generally be obtained using data mining tools. Unfortunately, data mining algorithms work best with large data sets, while student data, available to HEIs, related to courses are limited and falls into the category of small data sets. Thus, the study focuses on data mining for small student data sets and aims to answer the above research questions by comparing two different data mining tools. The conclusions of this study are very promising and will encourage HEIs to incorporate data mining tools as an important part of their higher education knowledge management systems. 2014 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Factor Analysis with Data Mining Technique in Higher Educational Student Drop Out

The increase of students’ drop out rate in higher education is one of the important problems in most institutions. The discovery of hidden knowledge from the educational data system by the effective process of data mining technology to analyze factors affecting student drop out can lead to a better academic planning and management to reduce students drop out rate, as well as can inform valuable...

متن کامل

Warehousing and Mining of Higher Education Data by Means of Statistical Process Control

Data warehouses are constructed at higher education institutions (HEI) using data from transactional systems such as the student information system (SIS), the learning management system (LMS), the learning content management system (LCMS) as well as certain enterprise resource planning (ERP) modules. The most common HEI data mining applications are directed towards customer relationship managem...

متن کامل

Data Mining Application in Higher Learning Institutions

One of the biggest challenges that higher learning institutions face today is to improve the quality of managerial decisions. The managerial decision making process becomes more complex as the complexity of educational entities increase. Educational institute seeks more efficient technology to better manage and support decision making procedures or assist them to set new strategies and plan for...

متن کامل

Opinion Mining, Social Networks, Higher Education

Background and Aim: With the advent of technology and the use of social networks such as Instagram, Facebook, blogs, forums, and many other platforms, interactions of learners with one another and their lecturers have become progressively relaxed. This has led to the accumulation of large quantities of data and information about studentschr('39') attitudes, learning experiences, opinions, and f...

متن کامل

Mining Educational Data Using Classification to Decrease Dropout Rate of Students

In the last two decades, number of Higher Education Institutions (HEI) grows rapidly in India. Since most of the institutions are opened in private mode therefore, a cut throat competition rises among these institutions while attracting the student to got admission. This is the reason for institutions to focus on the strength of students not on the quality of education. This paper presents a da...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2014